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We study the breakdown of a random fiber bundle model �RFBM� with n discontinuities in the threshold
distribution using the global load sharing scheme. In other words, n+1 different classes of fibers identified on
the basis of their threshold strengths are mixed such that the strengths of the fibers in the ith class are uniformly
distributed between the values �2i−2 and �2i−1, where 1� i�n+1. Moreover, there is a gap in the threshold
distribution between ith and �i+1�-th class. We show that although the critical stress depends on the parameter
values of the system, the critical exponents are identical to that obtained in the recursive dynamics of a RFBM
with a uniform distribution and global load sharing. The avalanche size distribution, on the other hand, shows
a nonuniversal, non-power-law behavior for smaller values of avalanche sizes which becomes prominent only
when a critical distribution is approached. We establish that the behavior of the avalanche size distribution for
an arbitrary n is qualitatively similar to a RFBM with a single discontinuity in the threshold distribution �n
=1�, especially when the density and the range of threshold values of fibers belonging to strongest �n+1�-th
class is kept identical in all the cases.
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I. INTRODUCTION

What causes fracture of materials in nature? Are there any
precursor that signals the imminence of a complete break-
down so that we can avoid them taking place? These are few
of the many questions that physicists and engineers are look-
ing at now a days to explore the fracture dynamics of het-
erogeneous materials �1,2�. A prior knowledge of failure
properties of such materials are of extreme importance for
problems related to physics of breakdown, material science
as well as architectural, mechanical, and textile engineering.
The simplest of all the attempts is a model of fibers with
randomly distributed threshold strengths known as the ran-
dom fiber bundle model.

In a random fiber bundle model �RFBM� �3–17�, fibers
with stochastically distributed values of threshold strengths
�i.e., the maximum external stress a fiber can withstand� are
clamped at both the ends. Since the threshold of a fiber de-
pends crucially upon the presence of defects in that particular
fiber, it is indeed useful to assign random threshold strength
to each fiber of the bundle. The threshold strengths however
are chosen from a given distribution, usually approximated
by a Weibull or uniform distribution. Under the application
of a weak external load, the fibers with threshold lying below
the applied stress, break and the resulting additional load is
distributed among the intact fibers using a load sharing rule.
This redistribution of stress causes further failures and the
dynamics stops when the system reaches a fixed point at
which no further failure takes place. To resume the recursive
dynamics, the external load is further increased to break the
next weakest intact fiber. The process continues until the
complete breakdown of the entire bundle.

In this work, we shall use the global load sharing �GLS�
rule where the additional load generated due to the breaking

of a fiber is shared equally by all the intact fibers of the
bundle. In the GLS scheme, the breakdown of the fiber
bundle can be interpreted as a continuous phase transition
with well defined critical stress and critical exponents
�7–10�. For a RFBM with GLS, it has also been established
that the distribution D��� of an avalanche of size �, defined
as the number of fibers broken between two successive load-
ings, satisfies a universal power law D�����−5/2 in the limit
of �→� �4,5�. In a recent work, Pradhan, Hansen, and Hem-
mer �11� showed that in the vicinity of the critical distribu-
tion where the average external load on the bundle is maxi-
mum, the avalanche size distribution shows a crossover to a
new power-law behavior given by D�����−3/2 for small
values of ���c while for ���c, the �−5/2 behavior is re-
covered. The characteristic size �c around which the cross-
over occurs diverges in a power-law fashion as the critical
distribution is approached and at the critical distribution the
�−3/2 behavior is observed for the entire range of �.

In a recent paper, the authors �15� investigated the robust-
ness of the above universal power-law behavior of the ava-
lanche size distribution by introducing a discontinuity in the
threshold distribution ���th� which is given by

���th� =
1

1 − ��2 − �1�
, 0 	 �th � �1,

=0, �1 	 �th 	 �2,

=
1

1 − ��2 − �1�
, �2 � �th � 1. �1�

Hence, two types of fibers �weaker and stronger� separated
by a gap in their threshold distributions coexist in the same
bundle with more than half of the fibers belonging to the
stronger class. It has been established that there exists a non-
universal nonpower law behavior in the avalanche size dis-
tribution for small � which crosses over to the universal
behavior �−5/2 in the asymptotic limit of �. Most interest-
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ingly, it was pointed out that the nonuniversality becomes
prominent only when a critical distribution is approached.
The threshold distribution given in Eq. �1� with �2=0.5 is the
critical distribution of a RFBM with single discontinuity
�15�, because as soon as the redistributed stress reaches 0.5,
the bundle is critical and breaks down completely with an
infinitesimal increase in the external load. At a critical distri-
bution, however, there is a crossover from the nonuniversal
behavior to a power-law behavior with �−3/2 for large �. A
recent study of an infinite gap generalization of the above
model predicts a new exponent �=9 /4� of the avalanche size
distribution �17�.

The natural question that remains is what would be the
effect of many such discontinuities on the avalanche size
distribution? We address this issue in the present communi-
cation where we study a RFBM with n-discontinuities in the
threshold distribution and investigate its effect on the critical
behavior and the avalanche size distribution. The paper is
organized as follows. In Sec. II, we introduce the model and
derive the critical stress and exponents using the recursive
dynamics approach. The results on the avalanche size distri-
bution and comparison with the n=1 case studied previously
are presented in Sec. III. We make concluding comments in
Sec. IV.

II. THE MODEL AND THE RECURSIVE DYNAMICS

The threshold distribution of a RFBM with
n-discontinuities studied in this paper is shown in Fig. 1. The
threshold range of the weakest and the strongest class of
fibers is from 0 to �1 and �2n to 1, respectively. The math-
ematical form of the normalized threshold distribution is
given by

���th� =
1

1 − �
i=1

n

gi

for �2i−2 	 �th � �2i−1 �2�

=0 otherwise, �3�

where 1� i�n+1, gi=�2i−�2i−1 and �0=0, �2n+1=1. The
above distribution suggests that �n+1� different classes of
fibers with the threshold of the fibers of the ith class ranging
from �2i−2 to �2i−1 are mixed. At the same time the restric-
tion 0	�1	�2¯ 	�2i−1	�2i	1 ensures the existence of
a gap or discontinuity given by gi in the threshold strengths

between ith and �i+1�-th class of fibers. We also assume that
the threshold values of the ith class of fibers are uniformly
distributed within the range �2i−2 to �2i−1 for all i, a condi-
tion that leads to a set of �n+1� additional relations connect-
ing the parameters of the system in the following way. Dis-
tributing a fraction f i of total number of fibers to the ith class
�with �i

n+1f i=1� and using the uniformity condition men-
tioned above we get

f i =
�2i−1 − �2i−2

1 − �
i=1

n

gi

�4�

such that �0=0, �2n+1=1 and once again 1� i�n+1 The
model therefore involves �2n� values of �i’s, �n+1� values of
density f i, the conditions given by Eq. �4� along with the
additional restrictions �i

n+1f i=1. Therefore, the total number
of free variables that can be chosen independently reduces to
2n. It should also be noted that since 1−�i=1

n gi is always less
than unity, we must have ��2i−1−�2i−2�	 f i for all i.

We shall estimate the critical stress of the above model
within the framework of a recursive dynamics and global
load sharing. The fibers belonging to all �n+1� classes coop-
eratively participate in sharing the additional load arising due
to the breaking of the weaker fibers. The fraction of unbro-
ken fibers after a time step t+1, denoted by Ut+1, is related to
Ut through the relation �10,15�

Ut+1 = 1 − P��t� = 1 − P� �

Ut
� , �5�

where P��t� is the fraction of broken fibers with the applied
stress � and redistributed stress �t, and is given as

P��t� = 	
0

�t

���th�d�th.

Similarly, the redistributed stress after a time step �t+1� sat-
isfy the recursive relation

�t+1 =
�

Ut+1
=

�

�1 − P��t��
. �6�

The fixed point solution for U�=U*� at which no further
failure takes place can be obtained by solving the above re-
cursive relations �5� and �6� �10�. Assuming that the redis-
tributed stress at some instant t, �t exceeds �2n �i.e., when
the redistributed stress initiates the breaking of the �n
+1�-th class fibers�, we obtain

Ut+1 = 1 − P� �

Ut
�

= 1 − 
�i=1

n
�2i−1 − �2i−2

1 − �
i

n

gi

+
1

1 − �
i

n

gi

� �

Ut
− �2n��

so that we get the fixed point solution

1
1−Σ gii

. . . . .

σ σ σ σ 1σ0 σ 2n54321

FIG. 1. Mixed uniform distribution with �n+1� classes of fibers
and n gaps or discontinuities.
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U* =
1

2�1 − �
i

n

gi��1 +1 −
�

�c
� . �7�

Along the same line of arguments, we find the redistributed
stress at the fixed point

�* =
1

2
−

1

2
1 −

�

�c
. �8�

Using Eqs. �7� and �8� we find that the critical stress is given
by

�c =
1

4�1 − ��
i

n

gi��

, �9�

which is the applied load per fiber at which half of the fibers
break. When the external load exceeds �c even by an infini-
tesimal amount, there is no real solution of U* and �* which
signals the complete break down of the bundle.

The critical stress of the mixed model varies with the gaps
gi and in the limit gi→0 for each i, we retrieve the critical
stress �c=1 /4 for a RFBM with uniform distribution �10�.
We also get back the result of single discontinuity case i.e.,
n=1 �15� if only g1�0. Equation �8� also shows that the
redistributed stress attains the maximum value of 0.5 at the
critical external stress �c.

Calling the redistributed stress x from now onwards, we
consider the constitutive equation F�x�=Nx �1− P�x��, where
F�x� is the average external load when the redistributed
stress is x. The load F�x� maximizes when the redistributed
stress x is equal to 0.5. Since the maximum value of the
redistributed stress is equal to 0.5, �2n must be less than 0.5
so that some fibers from �n+1�-th class also fail at the criti-
cal point. The constraint equations �4� suggest that for recur-
sive dynamics to hold good, more than half of the fibers must
belong to the �n+1�-th class with thresholds lying between
�2n to 1. We therefore define the threshold distribution ���th�
�Eq. �2��, along with the constraint conditions and �2n=0.5
as the critical distribution. It can also be shown in a straight-
forward way that the order parameter exponent �
� and the
susceptibility exponents ��� stick to the mean field �GLS�
values with 
=�=1 /2, even in the presence of an arbitrary
number of discontinuities provided uniformity condition is
satisfied and hence the critical behavior remains unaltered
although there is an appreciable change in the critical stress.

III. AVALANCHE SIZE DISTRIBUTION (ASD)

We shall now turn our attention towards the ASD of
RFBM in the presence of many discontinuities in the thresh-
old distribution which is the key point of our study. We show
below that the discontinuities have a non-trivial effect on the
ASD when a critical distribution is approached. We also ar-
gue that a situation with many discontinuities is qualitatively
similar to the single-discontinuity case. The scenario is es-
tablished considering a special case with n=2, where g1
=�2−�1 and g2=�4−�3 so that three classes of fibers with

range of thresholds lying between �0 to �1�, ��2 to �3�, and
��4 to 1�, respectively, coexist in the bundle while f1, f2, and
f3 are the corresponding densities. Some of the allowed dis-
tributions which satisfy the restrictions mentioned in Eq. �4�
are shown in Table I. Here, case 4 refers to a critical distri-
butions.

We shall now generalize the results of Hemmer and
Hansen �4� to study the avalanche behavior of the
n=2-discontinuity model. The general expression for the
avalanche size distribution with GLS is given as

D���
N

=
��−1

�!
	

0

xc

dx��x�
�1 − a�x��

a�x�

� exp��− a�x� + ln a�x���� , �10�

where x is the redistributed stress and the upper limit of the
integration �xc� is the redistributed stress at the critical point.
Also, a�x�=x��x� / �1− P�x�� is the number of fibers that
break as a result of breaking a fiber with threshold strength x
by applying an external load x / ��1− P�x��N�.

Let us first consider the breaking of fibers belonging to
class 1 with threshold values uniformly lying between 0 to
�1, this contribution D1��� is given by

D1��� =
��−1

�!
	

0

�1

dx
1

1 − g1 − g2

�1 − a�x��
a�x�

� exp��− a�x� + ln a�x���� , �11�

where a�x�=x / �1−g1−g2−x�. The maximum contribution of
this integral is at a�x�=1 or x= �1−g1−g2� /2, which exceeds
�1, i.e., lies beyond the range of integration and we can not
employ the method of the saddle point integration. However,
a�x� is a monotonically increasing function of x up to �1 and
we therefore get the maximum contribution when x reaches
the upper limit of the integration �1. The leading behavior of
D1��� �with �!=exp�−����2��, is given by

D1��� �
1

2�1 − g1 − g2�
�−5/2xm

� exp��1 − xm��� ,

�12�

where xm=�1 / �1−g1−g2−�1�= f1 / �1− f1�. Therefore, D1���
exhibits a nonuniversal decay with increasing � which is
more rapid if f1→0.

Similarly, the leading contribution of the fibers belonging
to the class 2 with threshold values ranging from �2 to �3
and a�x�=x / �1−g2−x� is found to be

TABLE I. Allowed threshold distributions.

Case f1 f2 �1 �2 �3 �4 �c

1 0.10 0.20 0.08 0.16 0.32 0.44 0.31

2 0.15 0.25 0.135 0.15 0.375 0.46 0.27

3 0.05 0.05 0.04 0.16 0.20 0.28 0.31

4 0.10 0.20 0.07 0.16 0.30 0.50 0.35

5 0.10 0.2 0.08 0.26 0.42 0.44 0.31

6 0.20 0.15 0.16 0.2 0.32 0.48 0.31
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D2��� �
1

2�1 − g1 − g2�
�−5/2ym

� exp��1 − ym��� ,

�13�

where ym=�3 / �1−�4�. Therefore, D2��� shows a similar
nonuniversal behavior which survives even for relatively
higher values of � if �3 approaches �4 and also �4→0.5.
The significance of the above findings is explained below.

Let us now focus on the contribution from the fibers be-
longing to class 3. Using Eq. �10� with a�x�=x / �1−x� and
f3= �1−�4� / �1−g1−g2�, we get

D3��� =
1

2�

f3

1 − �4
	

�4

0.5

dx
�1 − 2x�

x

� exp��−
x

1 − x
+ ln� x

1 − x
���� . �14�

The right-hand side of Eq. �14� can be integrated to obtain

D3��� �
f3

22�5/2�1 − �4�
�1 − e−�/�c� , �15�

where �c��1 /2−�4�−2, which diverges in the limit �4
→0.5. Our observations are depicted in Fig. 2, where D���
=�D1���+D2���+D3����, obtained by numerical integration
�Fig. 2�a�, 2�b�, and 2�d�� and also by simulation using the
weakest fiber approach �4� �Fig. 2�c��, is plotted for different
threshold distributions. It is to be noted that the contribution
D3��� depends only on �4 and f3, an observation that leads
to an interesting conclusion that the contribution to the total
avalanche size distribution coming from the strongest class
of fibers is identical for any number of discontinuities if the
fraction of fibers as well as the range of the threshold
strength of the final block is kept fixed �see Fig. 3�. Equation
�15� provides two limiting power-law behaviors given as

D3��� � �−3/2 for � 	 �c,

log
10

∆

lo
g

10
D

∆
N(

)

(a) (b)

(d)(c)

−8

−7

−6

−5

−4

−3

−2

−1

0 case1 case3

0 0.5 1 1.5 2 2.5

case1

class3
class2
class1

−8

−7

−6

−5

−4

−3

−2

−1

0

0 0.5 1 1.5 2 2.5

case4

FIG. 2. �a� The ASD for case 1 of Table I where a crossover from nonuniversal to the universal 5 /2 behavior is observed since �4 is close
to 0.5. �b� shows case 3 of Table I where no nonuniversal behavior is observed except for small values of �. ASD for a critical distribution
�case 4� is shown in �c�, where there is a crossover to the “3 /2” behavior for large �. The dotted line in �a� and �b� has a slope −5 /2 whereas
that in �c� has a slope −3 /2. In �d�, we show D1���, D2���, D3��� and the total ASD for case 1 to compare their relative magnitudes.
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��−5/2 for � � �c. �16�

Comparing Eqs. �12�, �13�, and �16�, we observe that in the
limit of small �, the nonpower law contributions from D1���
and D2��� dominates over the universal “5 /2” behavior only
in the limit of �4→0.5 when D3�����−3/2. Otherwise,
D3��� dominates over the non-universal contributions so that
one observes a universal behavior nearly for the entire range
of � though the discontinuities in the distribution always
exist. At a critical distribution however, there is a crossover
to the universal behavior D�����−3/2 for very large � fol-
lowing a large region of nonuniversality �see Fig. 2�c��. This
general behavior is valid for any number of discontinuities
including n=1 �15�.

Let us now concentrate on some interesting limiting situ-
ations to investigate the role of two discontinuities �i� If the
fraction f1 of fibers in class 1 is small, the contribution
D1�����f1 / �1− f1��� dies off rapidly. However, if �3 is
large and �4 approaches 0.5, there is a wide region of non-
universality in �D���−�� behavior which is solely due to
D2��� which scales as ��3 / �1−�4���. �ii� In the other limit,
when f2	 f1 �but f2+ f1	0.5, as required�, D1��� do domi-
nate in the small � limit, but for large � once again it is the
contribution of D2���, rather the larger value of �3 that leads
to a prominent nonuniversal behavior, e.g., case 6 in Table I.
We therefore conclude that the contribution from the weakest
class of fibers is not significant in the large � limit and it is

the higher value of ym=�3 / �1−�4� that causes the nonuni-
versality to survive up to relatively higher values of �
�Fig. 4�

IV. CONCLUSIONS

In conclusion, we have studied a mixed fiber bundle with
many discontinuities in the threshold distribution and GLS
where threshold values of the fibers belonging to a particular
class are uniformly distributed within the specified range.
Our studies lead to the following conclusions for an arbitrary
number of discontinuities: �i� The recursive dynamics studies
point to the existence of a critical distribution as defined in
the text. �ii� There exists a nonuniversal, nonpower-law be-
havior in the avalanche size distribution for small � which
becomes prominent only when a critical distribution is ap-
proached, otherwise it is masked by the universal behavior
except for very small �. For asymptotically large �, how-
ever, there is always a crossover to the universal behavior
with �=5 /2 �or �=3 /2 at the critical distribution�. The cross-
over occurs around �=�c where the contribution from the
strongest class of fibers Dn+1��� switches from �=3 /2 to �
=5 /2 behavior. �iii� Dn+1��� is found to depend only on fn+1
and �2n so the contribution of the fibers belonging to the
strongest class �i.e., the behavior of total D��� in the limit of
large �� remains identical for any number of discontinuities
if fn+1 and �2n are kept fixed. �iv� We also show that if �2n−1
increases and at the same time �2n→0.5, the nonuniversality
survives up to higher values of �.

�1� B. K. Chakrabarti and L. G. Benguigui, Statistical Physics of
Fracture and Breakdown in Disordered Systems �Oxford Uni-
versity Press, Oxford, 1997�; M. Sahimi, Heterogeneous Ma-
terials II: Nonlinear Breakdown Properties and Atomistic
Modelling �Springer-Verlag, Heidelberg, 2003�; H. J. Her-
rmann and S. Roux, Statistical Models of Disordered Media
�North Holland, Amsterdam, 1990�.

�2� R. L. Smith, Proc. R. Soc. London, Ser. A 372, 539 �1980�; S.
Zapperi, P. Ray, H. E. Stanley, and A. Vespignani, Phys. Rev.
Lett. 78, 1408 �1997�; J. V. Andersen, D. Sornette, and K. T.
Leung, ibid. 78, 2140 �1997�; S. D. Zhang and E-jiang Ding,
Phys. Rev. B 53, 646 �1996�; B. Q. Wu and P. L. Leath, ibid.
59, 4002 �1999�.

�3� F. T. Peirce, J. Text. Inst. 17, 355 �1926�; H. E. Daniels, Proc.

lo
g

10
D

∆
N(

)

log
10

∆

−6

−5

−4

−3

−2

−1

0

0 0.5 1 1.5 2

n=1
n=2

FIG. 3. Comparison of total avalanche size distribution for same
value of fn+1 and �2n when n=1 and n=2 where n is the number of
discontinuities. Clearly, the two cases overlap in the large � region
where the final block dominates. Here, fn+1=0.9 and �2n=0.28.

log
10

∆

lo
g

10
D

∆
N(

)

D
3
(∆

D (∆
2

D
3
(∆

D (∆
2

)
)

)
)

0 0.5 1 1.5 2
−10

−8

−6

−4

0

0 0.5 1 1.5 2

−2
case1
case1 case6

case6

FIG. 4. The figure shows the comparison of D2��� with D3���
for case 1 �left panel� and case 6 �right panel�. The figure shows that
the crossover to universal behavior occurs at higher value of � if
ym=�3 / �1−�4� increases.

RANDOM FIBER BUNDLE WITH MANY DISCONTINUITIES… PHYSICAL REVIEW E 78, 021118 �2008�

021118-5



R. Soc. London, Ser. A 183, 404 �1945�; B. D. Coleman, J.
Appl. Phys. 29, 968 �1958�; R. L. Smith, Proc. R. Soc. Lon-
don, Ser. A 372, 539 �1980�; R. da Silveria, Am. J. Phys. 67,
1177 �1999�;

�4� P. C. Hemmer and Alex Hansen, J. Appl. Mech. 59, 909
�1992�; A. Hansen and P. C. Hemmer, Trends Stat. Phys. 1,
213 �1994�; A. Hansen and P. C. Hemmer, Phys. Lett. A 184,
394 �1994�.

�5� M. Kloster, A. Hansen, and P. C. Hemmer, Phys. Rev. E 56,
2615 �1997�.

�6� J. B. Gomez, D. Iniguez, and A. F. Pacheco, Phys. Rev. Lett.
71, 380 �1993�.

�7� J. V. Andersen, D. Sornette, and K.-T. Leung, Phys. Rev. Lett.
78, 2140 �1997�; D. Sornette and J. V. Andersen, Eur. Phys. J.
B 1, 353 �1998�.

�8� Y. Moreno, J. B. Gomez, and A. F. Pacheco, Phys. Rev. Lett.
85, 2865 �2000�.

�9� S. Pradhan and B. K. Chakrabarti, Int. J. Mod. Phys. B 17,
5565 �2003�; P. C. Hemmer, A. Hansen, and S. Pradhan,
e-print arXiv:cond-mat/0602371; in Modelling Critical and
Catastrophic Phenomena in Geoscience, edited by P. Bhatta-
charya and B. K. Chakrabarti �Springer, Berlin, 2006�, p. 27.

�10� S. Pradhan, P. Bhattacharyya, and B. K. Chakrabarti, Phys.

Rev. E 66, 016116 �2002�; P. Bhattacharyya, S. Pradhan, and
B. K. Chakrabarti, ibid. 67, 046122 �2003�.

�11� S. Pradhan, A. Hansen, and P. C. Hemmer, Phys. Rev. Lett.
95, 125501 �2005�; S. Pradhan, A. Hansen, and P. C. Hemmer,
Phys. Rev. E 74, 016122 �2006�; S. Pradhan and A. Hansen,
ibid. 72, 026111 �2005�.

�12� D.-H. Kim, B. J. Kim, and H. Jeong, Phys. Rev. Lett. 94,
025501 �2005�; U. Divakaran and A. Dutta, Int. J. Mod. Phys.
C 18, 919 �2007�.

�13� F. Raischel, F. Kun, and H. J. Herrmann, Phys. Rev. E 74,
035104�R� �2006�; F. Kun and S. Nagy, ibid. 77, 016608
�2008�.

�14� Uma Divakaran and Amit Dutta, Phys. Rev. E 75, 011109
�2007�.

�15� Uma Divakaran and Amit Dutta, Phys. Rev. E 75, 011117
�2007�.

�16� S. Pradhan and Per C. Hemmer, Phys. Rev. E 77, 031138
�2008�; S. Pradhan and Per C. Hemmer, ibid. 75, 056112
�2007�; Per C. Hemmer and S. Pradhan, ibid. 75, 046101
�2007�.

�17� R. C. Hidalgo, K. Kovacs, I. Pagonabarraga, and F. Kun, Eu-
rophys. Lett. 81, 54005 �2008�.

UMA DIVAKARAN AND AMIT DUTTA PHYSICAL REVIEW E 78, 021118 �2008�

021118-6


